I’ve been reading a number of reports from the areas affected by the two major hurricanes (Helene and Milton). The North Carolina experience is particularly interesting because people have experienced the loss of communication and electrical service for several weeks. I can imagine this same thing happening in other parts of the country, including my area. As one example, read the on-the-ground disaster report from Thomas/K4SWL.
There are two important technology disruptions showing up in North Carolina: satellite-based internet (Starlink) and mobile-phone-to-satellite (SMS) text messaging. Starlink is having a significant impact during this incident, while mobile phone satellite messaging is still emerging. Steve N8GNJ has some worthy thoughts on these topics in Zero Retires 173. Although I have served in many ARES/RACES deployments over the years, I don’t consider myself an expert in this area. I’d appreciate comments from Emcomm folks who have spent more time thinking about this.
Types of Emergency Communication
Most relevant emergency comms lump into 1) short-range comms (< 5 miles) between family, friends, and neighbors. 2) medium-range comms (50 miles) to obtain information and resources. 3) long-range comms (beyond 50 miles) to connect with distant family, friends, and resources.
Short-Range Comms: This is the type of communication that is well served by mobile phones, except when the mobile networks are down. This is happening a lot in North Carolina. Lightly licensed VHF/UHF radios such as FRS and GMRS can be used to replace your mobile phone. Think: wanting to call your neighbor 3 miles away to see if they are OK or can provide something you need. (I have a few FRS/GMRS radios in my stash to share with neighbors. See TIDRadio TD-H3) VHF/UHF ham radio is, of course, even better for this, except the parties involved need to be licensed. (OK, you can operate unlicensed in a true emergency, but that has other issues. See The Talisman Radio.)
Medium-Range Comms: This is a great fit for VHF/UHF ham radio using repeaters or highly-capable base stations. GMRS repeaters can also serve this need. These communications will typically be about situational awareness and resource availability in the surrounding area. For example, someone on the local ham repeater may know whether the highway is open to the place you want to drive.
Long-Range Comms: Historically, this has been done by HF ham radio and a lot of emergency traffic is still handled this way. The shift that is happening is that setting up a Starlink earth station feeding a local WiFi network can help a lot of people in a very effective manner. Compare passing a formal piece of health-and-welfare traffic via ham radio to letting a non-licensed person simply get Wi-Fi access to their email or text messaging app. Hams are doing this, but many unlicensed techie folks have set up these systems and freely shared them with the public.
Mobile Satellite Messaging
Various providers now offer a basic text messaging capability using smartphones talking to satellites. Today, this capability is often limited to emergencies (“SOS”), and it is relatively slow. With time, this capability will certainly improve, and basic satellite texting will become ubiquitous on smartphones. This will be great for checking in with distant friends and families, but it may not be that useful for Short Range and Medium Range comms. Someday, it might include voice comms, but in the near term, it is probably just text-based.
Evan K2EJT provides some useful tips based on his experience here in this video. However, he doesn’t address the Starlink capability.
Summary
While much of the public appreciates the usefulness of ham radio during emergencies, I am already hearing questions like “Doesn’t Starlink cover this need?” My view is that Starlink (and similar commercial sats) is very useful and will play an important emcomm role, but it does not cover all of the communication needs during incidents such as hurricanes, blizzards, wildfires, earthquakes, etc. Similarly, Mobile Satellite communications will be a great help during emergencies in the future but will probably not cover every need. Emcomm folks (ARES and RACES) will need to adapt their approach to take this into account.
For our local 2m net, the Net Control Station asks a Question of the Night to stimulate some discussion. Recently, the question was:
Do you have any interest in CW. If yes, Do you currently operate CW or do you plan to learn? If you have no interest in CW, what other modes besides voice do you operate on or would like to?
I am not a huge CW fan, but I do use it from time to time, especially when it comes to squeezing out difficult contacts on VHF or UHF. However, this question had me thinking about the various modes I have operated, so I made a list:
SSB - quite often on HF, VHF, UHF
CW - not nearly as often but on HF, VHF, UHF
FM/PM - lots of VHF activity here, 2m FM is the Utility Mode
AM - a few times, just to check it out
RTTY - I used to do this often but my interest has faded
PSK31 - I used to do this often but my interest has faded
FT8 - this one has taken over my digital operating
FT4 - a faster alternative to FT8, often better to use
Q65 - I just started using this for weak-signal VHF/UHF
MSK144 - for meteor scatter, but I haven't done that for a while
AX.25 - VHF packet radio, including APRS
DMR - the most common digital mode in Colorado
D-STAR - I used D-STAR when it first came out but lost interest
C4FM - Yaesu Fusion, I've used it a few times
Each one of these modes has a story behind it…often I was just looking for something new to try. (If you find yourself getting bored with ham radio, it might be time to try a new mode.)
This list also reminds me that I need to get back to chasing grids on the 2-meter band, using CW, SSB, FT8, MSK144, and Q65. I have a new tower up that I’ve not taken full advantage of for VHF/UHF.
That’s my list of modes used, what does your list look like?
Recently, I’ve been getting questions about whether a ham needs to log radio contacts, whether they need to submit a log, and how to do it. Logging is a complex topic that can require a long and detailed explanation, but I am going to focus on the questions I’ve been hearing lately. I’ll also provide some links for further investigation. For starters, the ARRL has a good introduction to logging.
Why Keep A Log?
The FCC does not require you to log your amateur radio contacts. Many radio amateurs, especially if they just operate casually on 2m and 70 cm, don’t bother to keep a log. Probably the most common reason for having a log is to have a record of your radio contacts, in terms of stations worked, on what band and what conditions. This might be just for your own personal satisfaction or you might want to keep track of these contacts so you can get credit for an award, such as the ARRL Worked All States (WAS) award.
Paper or Electronic?
The Old School way of keeping a log is on paper as shown in the figure above. This approach is simple and reliable technology but is quite limited in the information age. These days, most hams that record log information store it electronically. Imagine that you log thousands of contacts over time and then want to find a particular callsign or location. Much better to do this electronically. There are many good software programs available, too many to list here. I currently use Amateur Contact Log from N3FPJ. The good news is that there is a standard file format for storing and moving ham radio contact information: Amateur Data Interchange Format (ADIF). If you want to change logging software, you export an ADIF file and import into the new program.
I Worked a Contest Station, Do I Have to Submit a Log?
Sometimes radio ham works a few stations that are active in a particular contest and they wonder if they must submit a log to the contest sponsors so that these these stations get credit for the contacts. The almost universal answer to this is: No. Don’t worry about submitting a contest log if you aren’t really “in the contest.” The stations you work still get credit for your contact with them. (This is true for all major contests…I am still looking for a contest where this is not true.) Contests are designed to encourage activity, so they want everyone to join in, even if they aren’t all that serious about contesting. (The contest sponsors will appreciate any and all logs submitted, so consider that.)
If I Am Actively Working a Contest, What Do I Do?
If you are actively participating in a contest, you should use a logging program that is tuned for that particular contest. This is important because the contest logging software knows about the scoring for the contest and lets you know if you have already worked a station you hear. The most popular logging software for contesting is the N1MM Plus software. There are other programs you can consider. Typically, you would use N1MM during the contest and then export the info into an ADIF file, which is imported into your “main” logging program.
What is a Cabrillo File?
While the ADIF file format is most universal in ham radio logging, there is another file format used for contesting. This is the Cabrillo file format. Your contest logging software can generate a Cabrillo file for submitting to the contest sponsor. You may also want to generate an ADIF file to import into your normal logging program.
I Worked a POTA Station, Do I Have to Submit a Log?
Parks On The Air (POTA) is set up so that only the activator station submits a log. If you are working an activator station, you are a hunter station. The POTA scores are all based on the activator logs and hunters cannot submit a log. What you can do is register on the POTA website to see the contacts that the activators have submitted for you.
I Worked a SOTA Station, Do I Have to Submit a Log?
Summits On The Air (SOTA) is set up so that both activators and chasers submit logs to the SOTA website. However, the SOTA system operates on the honor system, so an activator can claim a contact with you without you submitting a log. So if you hear a SOTA station, go ahead and work them. You don’t have to submit a log. On the other hand, if you want credit for chasing a summit, you need to submit a log. So that activator is fine not having you submit a log but you may want to do that to get credit for you.
How Do I Get Credit For Working A Country?
The gold standard for chasing countries, I mean entities, is DX Century Club (DXCC). If you are interested in DX, you should register with Logbook of The World (LoTW) with the ARRL. To get credit for working an entity (country), you need to submit your log and it must match the log submitted by the DX station. This is a higher level of confirmation because both parties must submit the log info and it must match within reasonable error limits.
There are other award systems for working countries, offered by QRZ, eQSL, etc.
How Do I Get Credit For Working a Grid on VHF/UHF?
The VHF UHF Century Club (VUCC) is the VHF/UHF equivalent to DXCC. Here the emphasis is on working maidenhead gridlocators on the bands above 50 MHz. Again, Logbook of The World is the database that authenticates confirmed contacts on these bands. Both parties must submit the log info and it must match within reasonable error limits.
What If Someone Needs My Log Submitted?
Most of the time, us normal hams are not considered DX. That is, that other station in the Cayman Islands doesn’t really need our contact confirmed. But there are exceptions. You might be in a state the other station needs confirmed. Or maybe it’s your county they need. In such a case, you might want to make a special effort to provide your log information to the right database. It will depend on what the other station needs…if they are going for an ARRL award, then Logbook of The World is the right place to upload your log. But they might be after a QRZ award or eQSL award, in which case you would need to provide your log to those websites.
Wrap Up
These are some of the questions I’ve been hearing.
What did I miss?
Anything else to add?
Everyone wants to know how their signal sounds on the air and often the best way to find out is a signal report from other ham radio operators. The standard signal reporting method for amateur radio is the RST (Readability-Signal Strength-Tone) system. See Practical Signal Reports on HamRadioSchool.com.
When using 2m FM on Summits On The Air (SOTA), we can simplify the signal report. Because it is a voice mode, we drop the reading for Tone and just give RS reports, so a perfect signal on voice is RS 59 or simply “five nine.” The Readability report is a number between 1 and 5, while the Signal Strength report goes from 1 to 9. (See the listing at the bottom of this article.) The signal strength generally corresponds to the S meter reading on your radio but most FM rigs have very basic meters. Some don’t provide a meter reading at all. The photo to the left shows a typical bar graph on a Yaesu FT-60. Don’t expect high accuracy, so if the meter reads full scale, give an S9 report. If it reads half-scale, that’s probably S5, etc.
On VHF FM, signal reports may also be given in terms of FM quieting. A strong FM signal is said to “quiet the receiver” since there is virtually no noise present in the received audio. As the signal strength is decreased, noise starts to appear on the received signal. At lower signals levels, the noise increases dramatically and the signal becomes unreadable. This dramatic increase is called the threshold effect, meaning that FM signals do not gradually fade out, they tend to fade quickly into the noise. The key idea here is that you want your signal to be strong enough to be above this noise threshold. In terms of a signal report, a strong signal may result in a “full quieting” report. If the signal is less than full quieting, you may hear a report like “90 percent quieting” or “you have about 10% noise”, which both describe the amount of noise present in the signal. If the signal is really noisy, the report might be “50% quieting.”
Keep It Simple
For practical 2m FM operating, don’t overthink these signal reports. If the signal is easy to hear and is full-scale, give a 59 report. If it is easy to hear but the meter reading is less than full scale, reduce the signal level report to something like 56 or 57. If there is some noise present, you might want to reduce the readability to 4, so maybe give a 44 or 45 report. (Usually, if there is a readability issue, the signal strength will also be lower.) If you are having a difficult time hearing the signal, it’s probably a 33 or less. Readability of 1 or 2 is rarely used because it indicates you are not actually hearing the other station.
One final note is that sometimes the operator on the other end is looking for a more critical evaluation of his signal quality. If he says something about “checking out this new microphone” or “have been working on solving an audio problem”, that may be the clue to spend a little extra time really listening to the signal and providing more comments on how it sounds. For most of us, we don’t actually get to hear our own signal on the air, so it’s very helpful to get quality feedback from other radio amateurs.
Lately, I’ve encountered many people who apparently believe their radio is a Talisman. What is a Talisman, you say?
Talisman – An object marked with magical signs and believed to confer on its bearer supernatural powers or protection.
These people purchase some kind of two-way radio and have it stored away in their desk or closet, believing that having it will confer communication powers during an emergency. (Not to pick on Baofeng owners, but these radios are almost always a Baofeng UV-5R.) In many cases, they have the radio programmed with a long list of radio frequencies that have been identified as being good to have during an emergency. These are usually a mix of amateur radio, Family Radio Service, General Mobile Radio Service, Multi-Use Radio Service, search and rescue, and local fire and police frequencies.
Usually, the owner of the Talisman Radio has no real idea of how these frequencies are used. Again, someone told them they are good frequencies to have in a SHTF scenario. They often don’t know how to operate the radio or know what to expect in terms of its communication capabilities. It is simply a magical device that will save them when bad stuff happens.
Sometimes these people take the basic step of getting their amateur radio Technician license. I applaud this decision as it is the first step towards learning about ham radio. It also provides the proper license for legally using the radio on the ham bands. Unfortunately, many of these people just memorize the questions long enough to pass the exam and don’t gain any useful knowledge. This is a fundamental error. A much better approach is to focus on acquiring skills, knowledge, and equipment as part of their emergency preparedness plans. (Serious preppers know and practice this.)
If you are the owner of a Talisman Radio, I urge you to build your skills and get your ham license (if you don’t already have it.) There are many good license books available and the Ham Radio School online course is an excellent approach to learning this material. If you encounter Talisman Radio owners, please encourage them to get some training and learn how to use the radio. Don’t offer to program their radio with a bunch of frequencies they are not licensed to use and that may cause considerable trouble in the frequency spectrum. Encourage and help them but don’t enable their dependence on a Talisman Radio that will only let them down.
Training, training, training.
That’s what I think. What’s your opinion?
Amateur Radio Fun in the Colorado Mountains
August 2 through 5, 2024 www.ham14er.org
Amateur Radio operators from around Colorado will be climbing ColoradoSummits On The Air (SOTA) peaks and communicating with other radio amateurs across the state and around the world. Join in the fun during the annual event by activating a summit or contacting (chasing) the mountaintop stations.
This event is normally held the first full weekend in August. Again this year, we will add two bonus days to the Colorado 14er Event. The main two days remain Saturday and Sunday (Aug 3 & 4), while the bonus days are Friday Aug 2nd and Monday Aug 5th, for those SOTA enthusiasts that need more than two days of SOTA fun! Be aware that many mountaintop activators will hit the trail early with the goal of being off the summits by (1800 UTC) noon due to lightning safety concerns.
The 14er event includes Summits On the Air (SOTA) peaks, which provide over 1700 summits to activate. (See the W0C SOTA web page or browse the SOTA Atlas.) The Colorado 14er Event was started in 1991, about 19 years before the SOTA program was set up in Colorado. As SOTA grew in popularity, this event expanded from just the 14,000-foot mountains (14ers) to include all of the SOTA summits in the state. We still call it the Colorado 14er Event because, well, that’s where it all started and the 14ers are the iconic summits in the state.
Important: The recommended 2m FM frequencies have been changed to 146.58, 146.55, and 146.49 MHz, to align with the use of the North America Adventure Frequency for SOTA (146.58). The National Simplex Calling Frequency (146.52) may be used as appropriate. There will be plenty of action on the other ham bands, for more information see the operating frequencies page.
News Flash: I found a cheap economical VHF/UHF handheld that I really like. The TIDRADIO TD-H3 is getting a lot of attention from YouTube reviewers. You can think of this as an improved Baofeng UV-5R, with a few key features that grabbed my attention:
Improved Look and Feel: This radio looks like a quality product, much improved over the plastic Lego-style industrial design of the Baofeng radios. It feels and looks solid in my hand. The rubber duck antenna seems higher quality although I haven’t tested its performance.
One Radio, Three Modes: The firmware can be set to operate in three distinct configurations: Ham (transmit on 2m and 70cm ham bands only), GMRS (standard FCC Part 95 GMRS channels) and Normal (which is basically unlocked). You can easily switch between these modes but the memory information does get reset. So in most cases, you will need to reprogram the radio with your favorite frequencies after you change modes. The exception might be GMRS mode which will reset to standard GMRS channels. The flexibility of these three configurations is quite nice: The Ham configuration is great for normal ham operating with no risk of going “out of band.” I can loan out the radio in the GMRS configuration knowing that the user won’t inadvertently transmit on the ham bands. And, of course, the Normal mode provides access to a wide range of frequencies, to be used carefully, abiding by the relevant regulations.
USB-C Connectors: The radio battery has a USB-C connector for charging and a USB-C connector for programming (with Chirp or the TIDRADIO app). This may seem minor, but using a common industry-standard connector is a huge convenience factor. For example, I recently packed my gear for a trip and found that the USB cables I normally carry for my smartphone and tablet will handle the TD-H3 just fine. So there is no need for a drop-in cradle, extra charger or special programming cable.
Video Reviews
Apparently, TIDRADIO gave away a gazzillion radios to ham radio Youtubers and asked them to review the radio, so you’ll find many reviews out there. This one gives a good overview of the radio’s capabilities:
This radio is not quite the One Radio To Rule Them All, primarily because it won’t be convenient to switch between configurations. However, the radio is legal for GMRS and ham use, so that is definitely a plus. Will the FCC object to this kind of flexibility? Who knows, but they haven’t so far.
This video from KS6DAY shows how to switch between the three radio configurations:
Some Problems
Early on, several Youtube reviewers reported high spurious emissions coming from the radio. They fed this information back to TIDRADIO, who responded with a design change and some updated radios to test. They appear to have corrected this problem…the three radios in my possession tested out fine. There have also been some complaints about how a few features work and TIDRADIO has responded with a firmware upgrade to address those issues. So we can give TIDRADIO a good grade for responsiveness but poor marks for releasing a product that was not completely baked. Unfortunately, there are many videos in the etherwebz claiming the radio has problems and it is a challenge to sort through the actual situation today.
To become familiar with the radio, KS6DAY has a series of videos that explain how to use the radio. Lots of good information here:
Summary
As I mentioned, I have three of these radios and may be going back for more. For me, they fit the role of that “spare radio” that is kept in my vehicle, loaned out to other people, or just stored away for When All Else Fails.
The Colorado Search and Rescue Association is promoting FRS (Family Radio Service) Channel 3 as “the default during backcountry search and rescue (backcountry SAR) emergencies.” FRS channel 3 is the same as GMRS (General Mobile Radio Service) channel 3. There is more GMRS info here. To keep things simple, no CTCSS (“privacy code”) is used…carrier squelch only. See the CSAR announcement here: FRS Radio Use for Backcountry.
For backcountry exploring, it is important to emphasize self-sufficiency and to avoid reliance on electronic gizmos that may fail. Avoiding an emergency situation is way better than having a device to call for help, which may be many hours away. See this article for a discussion of The Ten Essentials for Hiking.
Still, the FRS3 concept has merit. Many backcountry hikers already carry FRS or GMRS radios, so designating a preferred channel makes sense. My read on this is that randomly calling for help on FRS3 will not be very effective due to the limited range of FRS radios. However, it does not hurt to try. More likely, FRS3 can be used for local comms once Search and Rescue crews have been deployed and are within a few miles of the party in distress.
Ham radio operators may want to carry a handheld transceiver capable of transmitting on 462.6125 MHz. For emergency use only, of course.
I don’t need much but I do need a reason to get on the air. This can take many forms as I wrote in this blog post some time ago. I see quite a few new hams struggling with the problem of “I got this license but now what?”
Operating goals or awards are a fun way to keep focused on accomplishing something via ham radio. Really, it’s a specific reason to get on the air and make radio contacts. I am not big on idle chit chat via the radio (“the weather here is 65 deg and raining”) so having a reason to make contacts helps me get on the air. I’ve tended to pursue awards in a serial manner…once I hit some level of accomplishment, I usually declare victory and move on to something else.
Way back in the wayback machine, the first award I pursued was Worked All States (WAS). It does take some effort but I was pretty active on the HF bands at the time, so many of the states just showed up in my log. But to really drive it home, I kept track of which states I still needed and actively looked for opportunities to work them. Later, I pursued Worked All Continents (WAC), which obviously requires working some DX. But then I decided that if I had any DX cred at all, I needed to get DX Century Club (DXCC). Recently, the popularity of FT8 has been a game changer and I currently have about 175 entities confirmed (thank you, Logbook of The World). I don’t chase paper QSL cards anymore, which is just too much trouble for a Slacker DXer™.
The VHF and higher bands have always been a passion for me, so I pursued the VHF/UHF Century Club (VUCC) awards. First, it was 6 meter VUCC, the easiest one to get. A really good run during the ARRL June VHF contest can produce the 100 grids you need for the award in one weekend. Later, some mountaintop activity resulted in 10 GHz VUCC. At one point, I got into working the LEO satellites and confirmed the required 100 grids for satellite VUCC. (Hey, Technicians, this is something you can do right now!) I still don’t have very many grids confirmed on 2 meters, so that one is still calling to me.
Summits On The Air
If you read my blog, you know that Summits On The Air (SOTA) is my number one activity lately, both activating and chasing summits. This is a natural fit for me as I’ve enjoyed mountaintop operating in various forms, mostly on VHF and UHF. (See my SOTA blog postings.) My hiking partner and wife, Joyce/K0JJW is almost always activating with me. Her #1 ham radio activity is also SOTA. We both achieved Mountain Goat status (1000 activator points) using only VHF and higher frequencies. (Technicians can have a lot of fun with SOTA on VHF!)
The SOTA program has a wide variety of awards, supported by a comprehensive database used to record SOTA radio contacts and keep track of the scores. It is not really a competition but there is friendly rivalry between SOTA enthusiasts as they monitor each other’s posted scores. Here are the “badges” that pop up when I check my SOTA info.
Parks On The Air
In the past few years, we have added the Parks On The Air (POTA) program. It turns out that not all regions of the country have interesting SOTA summits but they all have state or national parks. This fits nicely into our outdoor hiking/camping/4WD activities.
Many of our SOTA activations are in parks (national forests, national parks and state parks), so we usually try to make the SOTA activation count for both programs. This means that many of our POTA activations are done using VHF/UHF only, if from a summit. More commonly, we use the HF bands for POTA activations. Our standard POTA setup is a Yaesu FT-991 driving an endfed wire antenna, usually on SSB or FT8.
POTA also has a great database, good tools and plenty of awards available. Here’s what shows up on my POTA awards page. Just like SOTA, POTA is not a competition but it is interesting to see what other hams are doing and compare you level of activity.
So those are my thoughts.
What motivates you to get on the air?
Amateur radio transceivers have improved dramatically over the decades and they pack a lot of capability into relatively compact radios. In this post, we will take a look at the typical configurations and how they may impact setting up a flexible amateur radio station today. This discussion is focused on currently available new gear, with 50 to 100 watts of RF power.
The most common HF radio configuration used to be a 5-band model that offered CW, AM, and SSB on 80 meters, 40 meters, 20 meters, 15 meters, and 10 meters. In the early 1980s, the WARC bands were added (named for the World Administrative Radio Conference of 1979) that authorized these new bands. The WARC bands are 30 meters, 17 meters, and 12 meters. These attractive new bands were soon added to the standard HF rig. Most HF radios include 160 meters (actually a Medium Frequency or MF band) on the low end and a general coverage receiver for 150 kHz to 30 MHz. So these days, the typical HF transceiver handles 9 bands and many different modes. (Actually, most of these rigs now include 6 meters, more on that later.)
Dominant Design
In the world of product development, the concept of a dominant design often emerges. This generally accepted approach dominates a particular market and is considered the standard way of doing things in a particular product category.
Dominant design is a technology management concept introduced by James M. Utterback and William J. Abernathy in 1975, identifying key technological features that become a de facto standard. A dominant design is the one that wins the allegiance of the marketplace, the one to which competitors and innovators must adhere if they hope to command significant market following.
We will see that most ham radio gear conforms to the concept of a dominant design. That is, certain product configurations become standard, especially in terms of frequency bands and modes. Manufacturers still innovate by adding new features in an attempt to differentiate and obtain competitive advantage but the basic capabilities are standard. The dominant design for HF transceivers is the 100-watt radio that covers 160m through 6m.
VHF/UHF Radios
For VHF/UHF, the situation is a bit more scattered. 2-meter FM is the most popular band and back in the olden days, it was common to just have a single-band 2m FM rig in the shack. To cover 70 cm FM, a radio ham needed a second radio but later dual-band radios showed up that covered 2m and 70 cm. Today, the dominant design for VHF/UHF is the dual-band FM transceiver (typically 50 watts of output power) and there are so many of these available I won’t attempt to list them.
VHF FM is the utility mode for amateur radio and many hams are just fine using FM (or one of the digital voice modes) on VHF/UHF. Those who want to stretch the limits of VHF/UHF operating usually go for all-mode rigs that offer CW, SSB, FM and various WSJT digital modes. Again, back in the olden days, a VHF+ enthusiast would acquire single-band all-mode radios for the bands of interest. A ham really into VHF/UHF might have single-band radios for 6m, 2m, 1.25m, and 70 cm stacked up in the ham shack. The 1.25-meter band has always been a bit neglected in terms of equipment availability because that band is not available worldwide. Transverters are another option to get all-mode capability on these bands using an HF transceiver to transvert to a single VHF or UHF band.
HF Plus 6 Meters
One important addition to the standard HF rig is that the 6m band is often included. Now this may not sound quite right because we all know that 6 meters is a VHF band, so what is it doing in an HF radio? It actually makes a lot of sense because a lot of 6-meter operating is similar to HF. (6 meters is the VHF band that often emulates HF.) There is FM activity on 6 meters but most of the action is on SSB, CW, and, yes, FT8. In fact, FT8 is seeing a lot of action on the band, so if you want to participate on 6m, you should consider that mode. Anyway, this all means you probably need an all-mode radio for 6 meters, and having it as a bonus band on an HF radio without a huge increase in cost is a good approach. (These radios usually support FM for the 10m and 6m bands.)
There are many great HF/6m radios to choose from so I won’t try to list them all. Some of the more popular ones in the $1k to $1.5k range are: Icom IC-7300, Yaesu FT-710, and Yaesu FT-DX10.
All-Band All-Mode Rigs
Another common transceiver configuration is the All-Band All-Mode radio available from several manufacturers. A great example of this type of radio is the Yaesu FT-991A, which includes 160m through 10m plus 6m, 2m, and 70cm. Once again, 1.25m is passed over. This radio configuration has a lot of appeal because it covers pretty much everything with all-mode capability. (It also has a built-in sound card and USB connection which is handy for the WSJT digital modes.)
The FT-991A is a good choice for the ham shack or operating portable but it is a bit large for a mobile installation. Icom offers the IC-7100 in a mobile form factor, with a novel sloping detachable front panel. Yaesu used to offer mobile products in this space such as the very popular FT-857D transceiver. However, the FT-857D is no longer made and its apparent replacement is the FT-891 which has only the HF + 6m bands.
The main disadvantage of this type of radio is that it can only do one frequency at a time. Often, I want to be able to work HF while still monitoring the local 2m FM repeater and simplex channels. Or maybe I’d like to keep listening for 6 meter activity while working 2m SSB, especially during a contest. However, this type of radio is my first choice for portable operating for Parks On The Air because it covers all the bands and modes. This article is focused on 100-watt radios but note that there are all-mode all-band QRP radios such as the IC-705.
All Mode VHF/UHF Radios
One interesting and disappointing trend that has emerged is the distinct lack of VHF/UHF all-mode transceivers. There is only one such radio on the market today, the Icom IC-9700 which does all modes on 2m, 70cm, and 23 cm (1.2 GHz). It seems that Icom decided that if they are going to offer a VHF/UHF radio, they would go full-featured and include 23 cm. Note that if you pair this radio with an HF plus 6m radio, you can cover all the popular bands with all modes using two radios. This radio is not inexpensive, currently selling new for about $1800.
I suppose we can declare this the dominant design for VHF/UHF but it is a lone product in this space. I have written previously about an all-mode dual-band portable radio for 2m/70cm that I desire. I own an IC-9700 and like it a lot but I would give up the 23 cm band to have a radio that is more portable and less expensive. I suspect that Icom is happily making good profit margins on the IC-9700 given that they have essentially no competition in this space. Yaesu has the technology to do something here but has been content to let the FT-991A cover the all-mode 2m/70cm space for them.
Common Ham Shack Setups
Now let’s take a look at some common ham shack configurations that consider these different radio configurations. When I say “ham shack” that may include your mobile or portable station, too.
Setup 1: FM VHF/UHF Only A Technician might decide they want to focus on 2m and 70cm, with FM being just fine for working simplex and repeaters on those bands. A basic dual-band FM transceiver will handle this nicely, see A VHF FM Station at Home. For some hams, their dual-band handheld radio serves this purpose.
Setup 2: All-Band All-Mode Transceiver As mentioned earlier, All-Band All-Mode radios cover the most popular ham bands and modes with one rig. They are a good way to get one radio that does everything. The disadvantage is not being able to monitor VHF/UHF at the same time as working HF.
Setup 3: HF/6m radio plus 2m/70cm FM radio This is a very common configuration for a ham shack because it separates the HF bands (and 6m) from the 2m/70cm FM operating. The FM rig can be left monitoring your favorite repeater or simplex frequency while you chase DX on 15 meters. If your 2m/70cm needs are basic, the FM radio might even be a handheld transceiver.
Setup 4: HF/6m radio plus all-mode VHF/UHF radio This is the setup for the ham that wants to cover all the bands and be able to do all modes on VHF/UHF. The band/mode coverage is similar to Setup 2 but we have two radios available which provides the monitoring flexibility associated with Setup 3. This configuration allows for having a really good HF/6m radio and a really good VHF/UHF radio.
Conclusions
The ham radio transceivers being offered tend to follow certain patterns consistent with the dominant design theory. If you buy a modern HF transceiver, you will likely get all of the HF bands plus the 6m bonus band. These radios vary in features and performance but they all have good band/mode coverage. The VHF/UHF situation is perhaps not quite as simple. The standard 2m/70cm FM rig is a popular option but is limited to FM only. The VHF/UHF weak-signal enthusiast does not have many choices beyond the IC-9700, which may represent an opportunity for another manufacturer to jump in with a more cost-effective 2m/70cm all-mode radio. The 1.25m band continues to be neglected and may be a good additional band to add to 2m/70cm radios.
Pikes Peak is a great summit for a SOTA activation. You can hike up, drive up, or take the cog railway to get to the top. Pikes towers over eastern Colorado and has an excellent radio horizon in all directions. It is easy to work a bunch of stations on 2m FM. With a bit of effort, you can work Kansas, Nebraska, Wyoming, and New Mexico on VHF.
Fraser/MM0EFI was visiting from Scotland, operating here in the US as W0/M0EFI. Here’s his HF operating experience, with cameo appearances by Carey/KX0R, Christian/F4WBN, Elliot/K6EL, and Steve/WG0AT.
Now for the VHF fun on 2m FM. I happened to be on South Monarch Ridge (W0C/SP-058) that day and we completed a Summit-to-Summit contact on 146.52 MHz, at a distance of about 80 miles—easy contact using just HT’s on both ends.
Fraser, thanks for the fun videos from America’s Mountain.
My ham radio pursuits have tended towards the VHF/UHF bands and the 6-meter band (50 MHz) has always been interesting to me. I like to think of 6 meters as a VHF band with some strong HF tendencies. Most of the time, propagation is local, certainly beyond line-of-sight, but also not long distance. When sporadic-e and F2 propagation show up, 6m tries its best to act like an HF band, skipping the signal off the ionosphere.
We call it the magic band because magical propagation occurs just when we least expect it. A more accurate name might be the fickle band because 6 meters provides short periods of random excitement followed by long periods of severe quiet. And that is why we like it so much.
Jim Wilson K5ND recently completed the third edition of the book Magic Band Revealed. Of course, I had to read it and I surely did enjoy this book. Jim hits all of the different operating and propagation modes that hams use on 50 MHz: sporadic-e, F2, TEP, meteor scatter, ionoscatter, etc. The WSJT-X modes have had a huge impact on what’s possible on the band, so Jim provides a good overview of the various options (FT8, FT4, MSK144, Q65). Jim also provides some helpful information on VHF contests and operating as a rover.
The best attribute of the book is that it is primarily written as a first-person account of K5ND’s operating experiences. Reading the book is just like having a friend tell you about what they’ve experienced on the band, along with some great operating tips. Great work, Jim!
I was happy to contribute an article to the recent ARRL Parks On The Air (POTA) book. This piece is based on my Pikes Peak mountain topping article that appeared in the June 2023 issue of QST. This book is a collection of articles about POTA from 14 different authors, each writing about a different aspect of the program. The articles are all easy to read and generally provide a first-hand account of how the author has experienced POTA operating. There is plenty of beginner information and operating tips sprinkled throughout the book. More experienced POTA enthusiasts will probably pick up a few new ideas as well.
The Table of Contents below lists the articles and authors, giving you a good idea of the material covered. The meat of the book is only 118 pages long and it is quite easy to read.
My piece covered the triple activation I did from the summit of Pikes Peak, combining POTA, SOTA, and the June VHF Contest into one mountaintop adventure. For POTA, the park was the Pike National Forest (K-4404). I’ve done this type of combo activation in the past, sometimes just SOTA + POTA or just SOTA + VHF Contest. This time I did all three.
The book is available directly from the ARRL or from the usual book outlets such as Amazon.
The FCC will be voting on and will likely approve a Report and Order that eliminates the symbol rate restriction on HF data transmissions, replacing it with a bandwidth limit of 2.8 kHz. See FCC To Vote on Removing Symbol Rate Restrictions. The symbol rate limit of 300-baud is an obsolete way of limiting the signal bandwidth, created back when the data transmissions were predominately Frequency Shift Keying (FSK). It was a simple, practical way to regulate the bandwidth at that time but technology has moved on. The use of digital signal processing and efficient wireless encoding techniques require a better approach to bandwidth regulation.
A practical impact of this change is to allow higher speed protocols such as PACTOR-4 having a bandwidth of 2.4 kHz. I suspect we will see other protocols emerge that squeeze the best data rate out of the 2.8 kHz bandwidth.
Living in a Narrowband World
The FCC proposal implements a 2.8 kHz bandwidth limit on data emissions on the HF bands. Some folks have suggested a narrower bandwidth while others argue that wider bandwidth signals should be allowed. And some even think we should have no bandwidth limit at all.
The problem is that the amateur HF bands are not very wide. For example, the popular 20m band is 14.0 to 14.350 MHz, providing only 350 kHz of spectrum. Common practice on this and the other HF bands is to use modulation types that have bandwidths of 3 kHz or less. (Yeah, AM signals are twice that wide, at 6 KHz, a topic for another day.) Of course, CW and some of the data modes are much narrower than 3 kHz. But the general approach to regulating HF is to allow many narrowband signals on the band. Limiting HF data transmissions to 2.8 kHz bandwidth is consistent with existing practice while still allowing for innovation and experimentation.
VHF/UHF Bandwidth Limits
The FCC also plans to issue a Further Notice of Proposed Rulemaking (FNPR) that:
Proposes to remove the baud rate limitation in the 2200 meter and 630 meter bands, which the Commission allocated for amateur radio use after it released the Notice of Proposed Rulemaking in 2016.
Proposes to remove the baud rate limitation in the VHF and UHF bands.
Seeks comment on the appropriate bandwidth limitation for the 2200 meter band, the 630 meter band, and the VHF/UHF bands.
I won’t comment on the 2200 meter and 630 meter bands. The FCC proposes to remove the symbol rate limit on the VHF and UHF bands and asks what bandwidth limit is appropriate. The current bandwidth limits are 20 kHz for the 6m and 2m bands, 100 kHz for the 1.25m and 70 cm bands, and the FCC seems fine leaving these the same. Authorized emission types are listed in FCC Part 97.305.
With 4 MHz of spectrum, the 2m band is much wider than any of the HF bands. It might be tempting to conclude that there is plenty of room for wideband signals on this band. Many hams think 2 meters is just used for FM simplex and repeaters but a closer look reveals that it supports many diverse modes: weak-signal SSB/CW, meteor scatter, EME, FM simplex, FM repeaters, digital voice modes (D-STAR, DMR, Fusion), satellites, and more. The 20-kHz limit seems appropriate, as it roughly matches the bandwidth of the most common (FM) voice signals on that band. It is not an appropriate band for trying out wider bandwidth signals.
The 6m band should probably keep the same 20-kHz limit. (I don’t think there is a compelling reason to change it.) The 1.25m band already allows 100-kHz bandwidth data signals, which some radio amateurs have used for higher-speed data links (still not what I would call wideband).
The 70 cm band is much bigger (420 MHz to 450 MHz) and could accommodate some wider bandwidth signals. Perhaps the existing 100-kHz limit should be increased? Keep in mind that fast-scan ATV is allowed on this band with a bandwidth of 6 MHz. Maybe we can make some room for a few larger bandwidth data channels, to encourage innovation and experimentation.
The bands above 70 cm have no bandwidth limit other than the signal must stay within the designated ham band. It has been this way for a long time, without causing any issues (that I know of).
Conclusion
The FCC’s proposal makes a lot of sense and it is long overdue. Frankly, it is a bit of an embarrassment that it has taken so long.
Lobo Overlook is an excellent summit and tourist spot near Wolf Creek Pass, one of the most scenic passes in Colorado. I’ve been up there for VHF contests and other mountaintop operations and initially thought it might be a SOTA summit. No such luck, as it is superseded by a higher summit nearby (W0C/RG-169). No problem, we’ll just activate that one instead. Lobo Overlook is accessed via an easy 3-mile gravel road just off the pass. The road leads to two small loops at the top, one of which is the actual Lobo Overlook while the other goes to an obvious radio site. The trail to RG-169 is best accessed from the radio site, so we parked there. Wolf Creek Pass and Lobo Overlook sit right on the Continental Divide and the Continental Divide Trail (CDT) passes through here just a bit to the west.
Lobo Peak
This unnamed summit is listed as 11820 in the SOTA database. However, Lists of John (which was used to create the W0C SOTA database) shows this summit as 11831. My topo map seems to agree with 11831, so this might be an error. Of course, such a cool summit near the CDT deserves a name, so Joyce/K0JJW and I decided to call it Lobo Peak, for obvious reasons. (I looked for an existing nearby Lobo Peak and did not find one.)
Near the radio site, we started at the marked trailhead and headed west on Lobo Trail (878), actually going downhill to intersect the CDT about a half mile down the trail. At the trailhead, it was not obvious which summit we were headed to and it might not even be visible at that point. The summit did reveal itself as we headed down the CDT (see first photo above). We followed the CDT to a visible game trail that takes off steeply to the right (lat/lon 37.49765, -106.81515). There are several game trails that split off, heading up towards the saddle to the left of the summit and we stayed on the most established one. We set up our station within the activation zone just below the actual summit, avoiding the rock scrambling to get to the top.
The one-way distance on the trail is 1.2 miles with an up-and-down profile. Lobo Overlook is only slightly lower in elevation from “Lobo Peak”. The trail starts at about 11,770 feet, descending to a low point of 11,500 and back up to 11,800 at the summit. So that produces a net ascent of about 300 feet, maybe more, one way. Of course, you get to repeat this on the way back.
SOTA and POTA Activations
Once in the activation zone, we deployed the IC-705 on 2m FM, driving the 3-element Yagi antenna. We worked Travis/KB9LMJ on 146.52 MHz, who was mobile in Pagosa Springs. Further calling on 2m FM did not yield any contacts, but K0JJW and I did work each other on VHF/UHF. We had anticipated that this might be a tough place to activate on VHF, so we brought along the HF gear and set up an EndFed Halfwave antenna for 20m. Propagation was good and we soon worked 11 stations on 20m SSB.
This summit sits right on the dividing line between the Rio Grande National Forest and the San Juan National Forest, both valid for Parks On The Air (POTA). We opted to operate from the Rio Grande side (K-4405) because that was a new one for both of us.
Continental Divide Trail
I’ve hiked sections of the Continental Divide Trail before, including some pre-SOTA backpack trips with Denny/KB9DPF. It is a great trail because it runs along the backbone of the Rocky Mountains. It is often accessible via roads to high mountain passes. (Another example is Wander Ridge, just off Cottonwood Pass.) Once you hop onto the CDT, you are hiking an established trail that is literally on top of the world.
This is an excellent, easy-to-access summit in the Wolf Creek Pass area. So if you are in the area, this might be one to activate. The road to Lobo Overlook is closed during the winter.
Argentine Peak (W0C/SR-019) is a high 13er (13,738 ft) in the Sawatch Range of the Rocky Mountains. I had my eye on this summit for a Summits On The Air (SOTA) activation for quite some time now. This summit is a short distance from Argentine Pass, which is the fourth-highest road in Colorado at 13,207 feet. A non-radio goal I have is to drive the Jeep up the twenty highest roads in Colorado, so Argentine Pass is on that list. Not only that, Argentine Peak sits on the Continental Divide, separating the Arapaho National Forest and the White River National Forest, so it can also be activated for Parks On The Air (POTA).
So the plan emerged: Joyce/K0JJW and I would take the Jeep to Argentine Pass and then climb up to Argentine Peak for a SOTA and POTA activation. The road is usually blocked by snow for much of the summer, making it a late summer/early fall adventure. Somehow September slipped away and it is now October, but fortunately, the road is still open. Note that the more common way to hike Argentine Pass is from Silver Dollar Lake trailhead (see KX0R trip report).
The Road
The 4WD route starts with FS 248.1 as it leaves Guanella Pass Road, about 3 miles south of Georgetown, CO (see map above). The forest service road takes off at a point where the Guanella Pass Road takes a very sharp bend. You should have a good topo map to guide you on this route as there are quite a few roads in the area. In general, you follow FS 248.1 which has some subvariants such as 248.1B and 248.1K. The exact choice of roads is not critical but, eventually, you need to get on FS 724.1 which sports a few wide and steep switchbacks up to Argentine Pass. The one-way distance is 9 miles and it took us about 1.5 hours to make the drive.
This road and route is considered moderate 4WD and FS 248.1 provides a good taste of that right after you leave the paved road. Many other sections of the road are easy 4WD but there are some challenging spots along the way. This is a real 4WD road, so you’ll need a decent high-clearance 4WD vehicle in the class of a Wrangler, Bronco, 4Runner, etc. We drove a stock Jeep Wrangler and had no trouble. However, at one spot, the wheel placement was very critical, so Joyce spotted me as I drove through it. Not that difficult…unless you screw it up.
The Climb
As shown below, the climbing route up Argentine Peak (blue line) follows the Continental Divide ridge line as it heads south from Argentine Pass. The road up Argentine Pass ends kind of high in the pass, so at first, we were walking downhill. A faint trail follows the top of the ridge but fades out in many places. Looking at the topo map, I underestimated how much up and down there would be on the ridge but it was not too difficult.
The hike is about 1 mile with 650 feet vertical (one-way). We had fantastic weather in October: sunny, with temperatures in the 40’s F and some light wind (10 to 15 mph). This is one of those top-of-the-world hiking experiences, right along the Continental Divide.
As you can see from the photos, there were some patches of snow on the ground, but it was not an issue for hiking. A real Mountain Goat (not a SOTA Mountain Goat) wandered by and paid us a visit.
This mountain goat wandered by while we were on the summit.We used our standard 2m/70cm FM station: Yaesu FT-90 running 30 watts to a 3-element Yagi for 2 meters or a 5-element Yagi for 70 cm. We worked stations mostly on 146.52 MHz FM and a few on 446.0 MHz. With downtown Denver about 45 miles away, we easily worked stations in the greater Denver area. We were also successful working stations out to 60 or 70 miles, often with good signal reports in both directions. We both made 20 QSOs using VHF/UHF.
For POTA, we were right on the dividing line between White River NF and Arapaho NF but needed to choose one for our activation. We had previously activated Arapaho, so we chose to operate from White River NF on this trip (K-4410) which is a new park for us.
Summary
We had an absolute blast on this activation. I think it was the combination of a Jeep trip, hiking, SOTA, and POTA all wrapped into one adventure that made it so good. As a bonus, we had excellent weather and a visit by the mountain goat!
In a previous post, I described getting the IC-705 set up for FT8 using the SDR-Control app on an iPad. My objective was to have a portable FT8 station for use during SOTA and POTA activations.
To save time, let me get this out of the way:
Yes, I do know that making contacts via FT8 is not as personal and may not be as much fun as running a pileup on SSB or CW. Still, it is Real Ham Radio and enjoyable in a different way.
I’ve used this station on multiple activations now but I have to admit that these have been mostly for POTA. It seems that whenever I get on top of a SOTA summit, I tend to focus on making VHF contacts which consumes the available time and the HF gear remains stashed way in my pack. This is more about my operating habits than anything else. Looking at spots though, there is a lot of FT8 on POTA and not nearly as much on SOTA. The SOTA crowd tends to have a lot of traditional CW enthusiasts and maybe POTA has fewer of them. Also, SOTA operating is usually backpack portable so carrying a compute device for FT8 may be considered an unnecessary hassle. POTA stations are often in or near a vehicle, so station size/weight is less of a concern.
For POTA, I make sure my activation is posted at pota.app, indicating the park number I am activating. When calling CQ, I modify the standard FT8 text to be “CQ POTA” to indicate that I am doing an activation. When my signal is detected by the Reverse Beacon Network (RBN), a spot is created that shows me doing a POTA activation from that park. Pretty cool. If I have an internet connection, I monitor my spots using the Ham Alert app. This provides useful feedback about where my signal is showing up around the world.
But what are the main reasons that FT8 is useful for POTA?
FT8 is popular
In case you haven’t noticed, FT8 has emerged from being just a niche activity to now being very popular on most ham bands. At times this can be a problem with the standard FT8 frequency slice being overloaded with signals. There is a lot of FT8 activity on the bands, for general ham use and SOTA/POTA.
FT8 works well with low power
FT8 and the other WSJT-X modes are designed to work well with weak signals, so they are a great match for low-power operation. Of course, QRP power levels are very common for backpack portable activations, mostly due to the limitations of carrying a reasonable-size battery.
FT8 signals are spotted on RBN
As mentioned earlier, FT8 signals are picked up and spotted by RBN. For better or worse, people have come to rely on spotting for many types of ham radio operating. When on a SOTA or POTA activation, you really want to be spotted as such. For phone activations, I usually do that with a smartphone but that requires some extra effort and a mobile phone connection. FT8 and RBN take care of that for you.
FT8 logging is automated
The various FT8 software applications automatically log the QSO information, which means it is easy and less error-prone. After the activation, I just pull up the ADIF log file, check it for obvious errors, add in the SOTA/POTA info, and submit it to the appropriate websites.
FT8 is campsite friendly
This last one may be a bit subtle but I’ve found FT8 to be campsite friendly. By that, I mean I can get on the air at any time (early, late or at nap time) and not disturb anyone else. (On SSB, I would likely be enthusiastically yelling into the microphone trying to work a pileup.) Besides the audio noise factor, FT8 operation allows for multitasking. I can converse with my fellow campers while still keeping up with the FT8 flow. Alternatively, I can cook dinner, make a fire, or pack my backpack while the FT8 QSOs roll in. This may sound a little bit like cheating but, hey, whatever works.
Wrap Up
So clearly, I’ve been having fun with FT8 for POTA. I consider it to be another tool in the toolkit. There are times when I will make good use of it but there will also be times to use other modes.
This past year, Joyce/\K0JJW and I did quite a few Summits On The Air (SOTA) and Parks On The Air (POTA) activations, often as part of an RV camping trip. During this time, we made some improvements to our portable gear. For SOTA, we primarily use the VHF/UHF bands but we have been sprinkling in a bit more HF activity. For POTA, we often don’t have a Height Above Average Terrain advantage, so we definitely use the HF bands.
Our main goal was to have a backpack portable station for SOTA and POTA that can cover HF through 70 cm, on the most popular bands/modes including CW, SSB, FM and FT8.
Using The IC-705
The Icom IC-705 is a great transceiver for covering most HF, VHF and UHF bands. With an external battery, the transceiver puts out 10 watts of RF power. (This is a bit less than the 50 watts from our Yaesu FT-90, which is our default choice for 2m and 70 cm SOTA.) We have accumulated a number of Lithium Iron Phosphate batteries from Bioenno. They are all set up with PowerPole connectors and are easily interchanged. See a previous post, My SOTA Battery Journey.
Arguably the biggest weakness of the IC-705 is the lack of an internal antenna tuner for the HF bands. Of course, you can operate without a tuner by making sure your antenna is always 50 ohms. I find that limiting, especially under portable conditions where the antenna configuration might be compromised. Also, some common end-fed antennas that cover multiple bands are not a good match for all bands. There are external automatic antenna tuners available for the IC-705, so initially those looked like a good solution. Then I remembered that I had a small MFJ-902 Travel Tuner that could do the job. The MFJ-902 is a classic T-network with two variable capacitors and one variable inductor. I gave it a try and was impressed with how easy it was to tune using the SWR meter of the IC-705. This thing is simple and it works.
The rear panel of the tuner has two SO-239 connectors, one for the transceiver and one for the antenna. I put a BNC adapter onto the transceiver port and used a short BNC cable to connect to the IC-705.
The Travel Tuner is compact and not very heavy, so it works out well for backpack portable use. It can handle up to 150 watts, which is overkill for the IC-705 but it may come in handy when used with a higher power transceiver. Still, I am on the lookout for an even more compact (probably lower power) manual antenna tuner.
We have collected a variety of HF antennas, focused mostly on 20 meters and higher. These are typically end-fed, including single-band half-wave designs as well as multiband random-length antennas. These are used in the classic SOTA configuration with one end of the wire supported by a lightweight fishing pole and the coax connection on the ground, fed by a 25-foot length of RG-8X coaxial cable.
FT8 Solution
With the popularity of FT8 on the HF bands as well as 6 meters, I figured we should include that mode in our portable kit. My first thought was to use a compact Windows computer running the standard WSJT-X software. Ultimately, I chose the SDR Control app for the Apple iPad (by Marcus/DL8MRE), which supports specific Icom radios. The iPad connects to the IC-705 via its WiFi connection, which simplifies the connection/cabling challenge. The SDR Control app does cost $49.99, so it is not your inexpensive iOS app but I have found it to be worth the price. Because this app is focused only on iOS and certain Icom radios, it is well-tuned to be a no-fuss solution. I am currently using the app only for FT8 but it has other features and modes for me to explore.
The Powerwerx PWRbox is shown in the photo above, which we often use for operating POTA. (This box is a bit heavy for hiking.) The PWRbox holds a 20 Ah battery as described here. Also shown in the photo is a handy little stand for the IC-705, the NEEWER Folding Z Flex Tilt Head. It does a great job of holding and stabilizing the radio at a variety of angles. (Hat tip to Kyle/KD0TRD.) It is also a little heavy for backpack portable, so it usually gets left behind on a hike.
For a protective case for the IC-705, we use the Maxpedition 12-Inch X 5-Inch Bottle Holder. I’ve seen other IC-705 users recommend it and OH8STN mentioned it on his blog. At first glance, the case seems a bit large but this provides enough room inside to stow a small Bioenno battery and other accessories. The side pouch is a good place for storing the microphone and power cord.
Wrap Up
This post shares some new equipment configurations we are using for SOTA and POTA, mostly focused on the IC-705. I really like that radio for portable ops as it is the best solution for operating HF through UHF. The SDR Control software on an iPad has also turned out to be a win for us.
What are you using for your portable station?
Do you have any tips or other operating ideas?
Joyce/K0JJW and I enjoy visiting the National Parks in the US, an activity that naturally combines with Summits On The Air (SOTA) and Parks On The Air (POTA). While planning a visit to Isle Royale National Park in upper Michigan, we decided to activate at least one SOTA summit as well as activate the park for POTA. The park is one large island surrounded by many smaller ones, accessible by boat or airplane. The park is actually closer to Canada than the US mainland.
There is quite a bit of information about visiting the park on the Isle Royale National Park website, so I won’t repeat that here. We opted to take the Isle Royale Queen IV ferry from Copper Harbor, MI to and from the island and stay for three nights at Rock Harbor Lodge on the northeast end of the park.
The closest SOTA summit to Rock Harbor is Mount Ojibway (W8M/UP-059), which soon became the objective for our SOTA activation. This summit had been activated only once, by Scott/WA9STI in 2017. I contacted Scott, who was very helpful in sharing his experience on Ojibway. (There are three other SOTA summits in the park, with first activations by Mark/NK8Q.)
We had four friends join us on this trip, including the hike to Mount Ojibway. Two of them were licensed radio amateurs: Paul/KF9EY and Beth/KB9DOU with Paul joining us in doing the SOTA activation.
Trip Planning
We normally do SOTA activations using VHF/UHF, so this raised the issue of whether that was possible given the remote nature of the island. I poked around on the interwebz and reached out to radio clubs on both the US and Canadian sides. Randy/VA3OJ in Thunder Bay and Bill/KD8JAM on the Keweenaw Peninsula were particularly helpful and they both confirmed they can work stations on Isle Royale from their locations using 2m FM. The distance is not that far, especially to the Canadian side, and it is a straight shot over water.
There were two things that I worried about on this activation: bugs and rain, neither of which were under our control. For bugs, we loaded up on a variety of insect repellents and head nets. However, once we arrived at the island, it was pretty clear the bugs were not bad at all, probably because we were late enough in the year (late August). For the rain, we made sure we had rain gear and synthetic clothes, with the attitude of expecting to get soaked and being able to survive it.
There was no internet on the island (the lodge says they have it but it was not working). Occasionally we would get 1 bar of Verizon LTE service at Rock Harbor but is was not reliable. This meant that we were very limited in sending any email updates out to people. I emailed our plans to interested parties and posted an Alert on SOTAwatch before we hopped on the ferry.
For equipment, we decided to take our Icom IC-705 and an external battery pack for 10 watts of RF on all bands of interest. Our priority was VHF but we also took along antennas for 40m through 10m. In addition, I configured an iPad for FT8 but we did not end up using that capability.
Mount Ojibway is about a 7-mile hike from the Rock Harbor Lodge, so we decided to have the water taxi drop us off at Daisy Farm Campground and hike in from there, which is about 2 miles one way. We also scheduled the water taxi to pick us up for the return trip. So this set us up for a 4-mile round trip hike with modest elevation gain.
Activation Day
On the morning of our activation, a thunderstorm rolled into Rock Harbor delivering a good dose of lightning to the area. I checked on the status of the water taxi and it was uncertain whether it would be running due to the storm. We sat tight and the weather cleared up enough such that we could go. Still, it was cloudy and the forecast included some rain in the afternoon. I told our group, “We are going to get wet today.”
Mount Ojibway at 1150 feet is part of the Greenstone Ridge that runs along the top of the island. It is also the location of an observation tower, now used as a radio site. The SOTA database shows the summit a bit to the northeast of the tower and the ridge is quite flat with a broad activation zone. My GPS app showed our hike as 1.9 miles one-way, with 540 feet vertical. The trail is well-established and in good condition. There were several narrow boardwalks (narrow planks) over marshy areas that were unnerving for some of our group.
At the summit, we appreciated some blue sky and nice weather that appeared while we set up the IC-705 and 3-element Yagi for 2 meters. We called CQ SOTA on 146.52 MHz and soon worked KD8JAM and VA3OJ. We kept calling and picked up two more 2m FM contacts: W9GY and VA3DVE. About this time, we set up the endfed antenna for the HF bands and (just barely) worked W0BV in Colorado on 20m SSB. (My phone was not able to spot us but I used my Garmin inReach to message W0BV and he came up on frequency.) I also worked W4GO, who had a decent 55 signal at the summit. But 20m was not working very well for us and I started to consider what changes I should make to the station. However, the dark clouds approaching from the northwest made that a moot point as we packed up our gear and headed down the trail. Sorry, we were not able to do more on HF.
Totally Drenched
On the way down the summit, things got a bit more exciting, and not in a good way. The storm clouds moved in and the light rain we experienced off and on during the day turned into a downpour. My warning of “we are going to get wet today” became all too true. This is the kind of rain that turned the nice, well-developed trail into a river of flowing water. With the rain came lightning, not close by but close enough. We were walking through a well-established forest so the lightning exposure was not too bad. The muddy trail definitely slowed us down as we did not want to add injury to our adventure.
We all were thoroughly drenched by the time we arrived at Daisy Farm Campground. At that point, the storm quit and we hung out on the dock waiting for the water taxi to pick us up. The water taxi apparently had its schedule adjusted and arrived over an hour later than expected. I guess we were on island time.
It was a successful but wet activation. Thank you so much to the radio amateurs who worked us, especially KD8JAM and VA3OJ. We couldn’t have done it without you.
For the Colorado 14er Event, Joyce/K0JJW and I decided to do one activation per day during the four-day event. We focused on 2m and 70 cm FM but also took along handheld radios for 1.25m and 23 cm. Our standard 2m/70cm portable station is a Yaesu FT-90, powered by a Bioenno battery, driving a small handheld Yagi (either a single band 2m or 70cm antenna).
On Friday, we activated Castle Rock, a short but challenging climb with plenty of nasty brush to scar your arms and legs. This is a summit that we’ve done before but not in the last few years. It is relatively close to our cabin so we decided to give it a return visit. Frankly, it is a lot of work for only 4 SOTA points, but it definitely gives you the feeling of a real climb. We had a late start this day due to a meeting that I needed to attend and I noted that we missed quite a few activators in the morning. We each made about 14 QSOs, mostly 2m FM, including 2 Summit-to-Summit (S2S) contacts.
On Saturday, we returned to Mount Antero at 14,269 feet. I did the first SOTA activation of this summit in 2011 and this latest one is my fifth activation. Dennis/WA2USA, W9 Mountain Goat from Indiana, joined us for this effort. Dennis worked CW on the HF bands while Joyce and I worked VHF/UHF.
We drove the Jeep to 13,800 feet and hiked up from there. This turned out to be the most fun summit of the weekend, because 1) it was a 14er with an excellent radio horizon 2) the weather was perfect 3) we had WA2USA along for the ride and 4) we took our time on the summit and just enjoyed the experience. Overall, I made 28 QSOs, 10 of them S2S. I caught Jon/KM4PEH on South Monarch Ridge on all four bands: 2m, 1.25m, 70cm, and 23 cm. It was a pleasure to work Terry/WB0RBA as he did the first activation of Mount Sopris (W0C/SR-039).
Wander Ridge (W0C/SP-042)
On Sunday, we headed to one of our favorite summits, W0C/SP-042, known as Wander Ridge. See my previous trip report for more detail. This activation starts with a hike on the Continental Divide Trail (and Colorado Trail) from Cottonwood Pass. It really is walking on top of the world.
The weather was sunny and warm but the wind was a bit of a challenge. We made good use of the rock shelter at the summit, sitting in comfort while we made radio contacts. When we stood up to leave, we were almost knocked over by the high winds.
I made 19 QSOs, including 4 S2S. Steve/WB5CTS showed up on 2 meters from Slumgullion Pass, but also had 1.2 GHz gear along, so we made a contact on that band (about 63 miles). I was not expecting 1.2 GHz activity but I did have the Alinco HT, so I used it with just a rubber duck antenna. Hey, it worked!
Finally, on Monday we activated The Pulverizer, near Wilkerson Pass, which is a new summit for us. See my trip report for more info: Activating the Pulverizer.
The first three summits are in San Isabel National Forest and The Pulverizer is in Pike National Forest, so we also submitted our logs as Parks On The Air activations.
We had a great time doing these summits. I enjoyed hearing the other stations having a good time making VHF contacts. It warms my heart when someone makes a VHF contact that they did not think was possible. That is exactly the point…you never know where the signal will go so give it a try and prepare to be surprised!